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WINSORIZATION FOR GENERALISED REGRESSION ESTIMATION

John Preston and Carl Mackin
Statistical Services Branch

EXECUTIVE SUMMARY

The availability of Business Activity Statement (BAS) data collected by the Australian
Taxation Office (ATO) has provided the Australian Bureau of Statistics (ABS) with
opportunities to improve the efficiency of sample design and estimation for its
business surveys.  The ABS business surveys currently use two methods of estimation;
number-raised estimation and ratio estimation.  While ratio estimation allows the use
of one auxiliary variable to improve the precision of the estimates, generalised
regression (GREG) estimation allows the use of more than one auxiliary variable, and
hence has the potential to be more efficient (i.e. reduce the current sample sizes for
ABS business surveys with no reduction in the precision of the estimates) than
number-raised and ratio estimation.

The generalised regression estimator is unbiased with respect to the assumed model.
However, if by chance there are several units in the sample with unusually large
residuals under the generalised regression model, then the generalised regression
estimator may grossly underestimate or overestimate the population totals.  One
solution to this problem is to modify values outside preset cutoff values to values
closer to these cutoff values.  This estimator is called the ‘winsorized’ estimator.
Although the winsorized estimator is biased, it may have a considerably smaller mean
squared error than the generalised regression estimator.

In order to minimise the mean squared error of the winsorized estimator, the choice
of the cutoff values can be written as functions of the proposed regression model and
the bias of the winsorized estimator.  The suitability of the winsorized estimator will
ultimately depend on the choice of the cutoff values, and hence the methods used to
estimate the bias parameters and regression parameters used to calculate these cutoff
values.

The estimate of bias parameters can be calculated using the approach outlined in
Kokic and Bell (1994).  However, there are many solutions to the problem of
estimating robust regression parameters.  It is worth noting that the task is not to find
the best robust regression model, but rather to find a robust regression fitting
procedure which results in the best performing winsorized estimator.  Furthermore,
since this procedure will have to be used for many ABS business surveys and
understood by a range of people, it is desirable that the procedure is simple, flexible



and easily traceable.  An investigation was performed using a number of different
robust regression fitting techniques to determine which techniques resulted in the
best performing winsorized estimator.

A simulation study was undertaken to assess the performance of these various
methods to estimate robust regression parameters, and hence estimate the cutoff
values used in the winsorized estimator.  The simulation study examined:

! the ‘best’ robust regression fitting technique;

! the data used to calculate cutoff values under winsorization;

! the level to calculate bias parameters under winsorization; and

! the sample weights to calculate the cutoff values under winsorization.

One of the key findings of the study was that diagnostics should be incorporated into
the regression fitting procedure before using the regression parameters to generate
cutoff values.  In particular, checking that the regression model fits the data well,
checking that units with large influences are removed from the regression model, and
checking that the regression model fits to current data to be winsorized.

There often exists linear relationships between the various data items collected and
derived in ABS business surveys, and it is important that these linear relationships still
hold after winsorization.  The current ABS estimation system allows the linear
relationships to be maintained by two methods.  Unfortunately, there are some
situations where these two methods perform quite poorly.  An alternative method
which attempts to overcome the shortcomings of the two methods is suggested,
which requires the specification of a distance function between the original and final
winsorized values.  Although any one of a number of distance functions could be used,
the one examined in this paper is the generalised least squares distance function.



DISCUSSION POINTS FOR MAC

The questions for MAC members in relation to winsorization for generalised
regression estimation are:

! Is the solution under linear interpolation to estimate the bias parameters better
than taking the last positive breakpoint?

! Is it logical to apply the same regression model used for the generalised
regression estimator, to generate the regression parameters for the winsorized
cutoff values? Should this same model be used to form winsorized cutoff values
for all variables collected in the survey?  If a regression model is known which fits
another variable better, then should this regression model be used to form
winsorization cutoff values for this other variable, even though it was not used
for the generalised regression estimator?

! Is it logical to fit regression model at different levels to the generalised
regression model?

! What is the best way to ensure the regression model fitted to the historical data
is still applicable to the current data to be winsorized?  What action should be
taken when the regression model does not fit the current data to be winsorized?

! What is the best way to deal with units with large historical values which have an
adverse influence on the estimate of the bias parameter?

! Is there any reason why the design weights should not be used in the calculation
of cutoff values used in the winsorized estimator?

! Is the concept of minimising a distance function to ensure linear relationships
between variables still hold after winsorization appropriate? Is the generalised
least squares distance function appropriate?
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WINSORIZATION FOR GENERALISED REGRESSION ESTIMATION

John Preston and Carl Mackin
Statistical Services Branch

1.  INTRODUCTION

The availability of Business Activity Statement (BAS) data collected by the Australian
Taxation Office (ATO) has provided the Australian Bureau of Statistics (ABS) with
opportunities to improve the efficiency of sample design and estimation for its
business surveys.  The ABS business surveys currently use two methods of estimation;
number-raised estimation and ratio estimation.  While ratio estimation allows the use
of one auxiliary variable to improve the precision of the estimates, generalised
regression (GREG) estimation allows the use of more than one auxiliary variable, and
hence has the potential to be more efficient (i.e. reduce the current sample sizes for
ABS business surveys with no reduction in the precision of the estimates) than
number-raised and ratio estimation.  The BAS data will potentially be a rich source of
auxiliary variables for use in GREG estimation.

1.1  Generalised regression estimator

Consider a finite population  , from which a probability sample { }1,..., ,...,U i N=

 is drawn according to a sample design with selection probabilities ( )s s U⊆

.  The sampling weights  are those used in the( )Pri i sπ = ∈ 1i iw π=

Horvitz–Thompson estimator, , for variable of interest y.  The objectiveŷ i i
i s

t w yπ
∈

= ∑

is to estimate the population total , where  is the value of the variable ofi
i U

Y y
∈

= ∑ iy

interest y for unit i.  Assume there exists a set of auxiliary variables 

 for which the population totals  are known.  The( )1 , , , , T
i i ki Kix x x x= � �
! x i

i U
t x

∈
= ∑

! !
generalised regression estimator is given by (Sarndal, Swensson and Wretman, 1992):

where

The generalised regression estimator is often written as:
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ˆˆ
T

yreg i i x i i
i s i s

t w y t w x β
∈ ∈

 
= + −  

 
∑ ∑! ! !

1

ˆ .T
i i i i i i

i s i s

w x x w x yβ
−

∈ ∈

   
=       
   
∑ ∑! ! !!

ŷreg i i i i i
i s i s

t w g y w y
∈ ∈

= =∑ ∑ !



where  the g-weight for unit i, defined as:ig

1.2  Winsorization

The generalised regression estimator is unbiased with respect to the assumed model.
However, if by chance there are several units in the sample with unusually large
residuals under the generalised regression model, then the generalised regression
estimator may grossly underestimate or overestimate the population totals.  It is
desirable to robustify the estimator against such unusually large residuals.  There are
two distinct solutions to this problem.  The first is to modify the weights associated
with these units (Hidiroglou and Srinath, 1981), while the second is to modify the
values of the variables of interest for these units.  One approach to this second
solution is to modify values outside preset cutoff values to values closer to these cutoff
values.  This estimator is called the ‘winsorized’ estimator (Searls, 1966).  Although the
winsorized estimator is biased, it may have a considerably smaller mean squared error
than the generalised regression estimator.

Let  be an unbiased estimator of the population total, under the model:ŷ i i
i s

t w y
∈

=∑ !

and suppose the winsorized estimator of the population total is given by:

where the winsorized value, , is calculated using the Type II winsorized estimator*
iy

(Gross, Bode, Taylor and Lloyd–Smith 1986), modified for two-sided winsorization:
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1

1
T

T T
i i i i i x i i

i s i s

g x w x x t w x
−

∈ ∈

     = + −           
∑ ∑! ! ! ! !

( )i iE Y µ=

( ) 2
i iVar Y σ=

*
ŷwin i i

i s

t w y
∈

=∑ !

*

1 1
1 ,if y

,if 

1 1
1 ,if y

i Ui i Ui
i i

i i Ui i Li

i Li i Li
i i

y K K
w w

y y K y K

y K K
w w

   
+ − >   

   
= ≥ ≥
    + − <      

! !

! !



(i.e. the outlier contributes its unweighted values, while the non-sampled units,

represented by the remainder of the weight, , contribute preset upper or lower1iw −!
cutoff values,  and , to the estimate of the population).UiK LiK

In order to minimise the mean squared error of the winsorized estimator under the
model, the choice of the cutoff value (Clark 1995) is given by:

where , and  and  are the bias of  and :( )* *
i iE Yµ = UB LB ŷwinUt ŷwinLt

where  is the estimate of population total when only upper winsorization isŷwinUt

performed and  is the estimate of population total when only lowerŷwinLt

winsorization is performed.

In practice  is difficult to estimate.  Under the assumptions that winsorization is*µi

mild and reasonably symmetric  is replaced with  to give approximately optimal*
iµ iµ

cutoffs:
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( )
*

1
U

Ui i
i

B
K

w
µ= −

−!

( )
*

1
L

Li i
i

B
K

w
µ= −

−!

ˆ[ ]U ywinU yB E t t= −

ˆ[ ]L ywinL yB E t t= −

( )1
U

Ui i
i

B
K

w
µ= −

−!

( )1
L

Li i
i

B
K

w
µ= −

−!



2.  CHOICE OF CUTOFF VALUES

The suitability of the winsorized estimator will ultimately depend on the choice of the
cutoff values, and hence the methods used to estimate the bias parameters and
regression parameters used to calculate these cutoff values.

2.1  Estimation of bias parameters

The estimate of bias parameter  under winsorization depends on the values of theUB

upper cutoffs, and can be calculated using the approach outlined in Kokic and Bell
(1994).  Firstly, define weighted residuals:

and let  such that , then the upper bias parameter can beUU B= − ( )1Ui i
i

U
K

w
µ= +

−!
written as:

The value of  can be found by solving the equation:UB

Let  be a robust estimate of  and define , then the previousˆiµ iµ ˆ ˆ( )( 1)i i i iD Y wµ= − −!

equation is piecewise linear with discontinuities at .  By setting ˆ
iU D=

 as the ordered values of , the distinct breakpoints of the(1) (2)
ˆ ˆ 0D D≥ ≥ ≥ ≥� � ˆ

iD

equation can be expressed as:
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( )( 1)i i i iD Y wµ= − −!

ˆ( ) [ ]

( 1){ [min( , )] }

[min{( )( 1),( )( 1)}]

[min{ , }]

[min{0, } ]

[ max{ ,0}]

U ywinU y

i i Ui i
i s

i i i Ui i i
i s

i
i s

i i
i s

i
i s

B U E t t

w E Y K

E Y w K w

E D U

E U D D

E D U

µ

µ µ
∈

∈

∈

∈

∈

= −

= − −

= − − − −

=

= − +

= − −

∑

∑

∑

∑

∑

!

! !

[ max{ ,0}] 0i
i s

U E D U
∈

− − =∑

( )

( )

( ) ( ) ( ) ( )

( ) ( )
1

ˆ ˆ ˆ ˆmax{ ,0}

ˆ ˆ1

U k k i k
i s

k

k j
j

D D D D

k D D

ψ
∈

=

= − −

= + −

∑

∑



Therefore, the optimal value of U can be found by solving the equation .  In( )ˆ 0U Uψ =

general there will be no exact solution to this equation.  The solution given by
Chambers, Kokic, Smith and Cruddas (2000) is:

where  is the last value of k for which  is non-negative.*k ( )( )
ˆ

U kDψ

An alternative solution is to use linear interpolation between  and 

*

( )*
1

1 ˆ
( 1)

k

j
j

D
k =+

∑

:
* 1

( )*
1

1 ˆ
( 2)

k

j
j

D
k

+

=+
∑

If there is limited data or the extreme weighted residuals differ significantly, then the

solution under linear interpolation will produce a lower value of  than taking to theÛ

last positive .  Hence, the solution under linear interpolation will reduce, to( )( )
ˆ

U kDψ

some extent, the influence of individual units on the value of .Û

QUESTION 1:  Is the solution under linear interpolation to estimate the bias
parameters better than taking the last positive breakpoint?

The estimate of the lower bias parameter  under winsorization can be found in theLB

same way.  Let  and then the lower bias parameter can be written as:LL B= −

By setting  as the ordered values of  then the distinct(1) (2)
ˆ ˆ 0E E≤ ≤ ≤ ≤� � ˆ

iD

breakpoints of the equation are:
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( )
*

( )*
1

1ˆ ˆ
1

k

j
j

U D
k =

=
+
∑

( ) ( )
( ) ( )( )

* *

* *

* *

1

( ) ( )( 1) ( )* *
1 1

( 1) ( )

1 1ˆ ˆ ˆ ˆ
( 1) ( 2)

ˆ
ˆ ˆ

k k

U j U jk k
j j

U Uk k

D D D D
k k

U
D D

ψ ψ

ψ ψ

+

+
= =

+

   
−   

+ +      =
−

∑ ∑

ˆ( ) [ ]

[ min{ ,0}]

L ywinL y

i
i s

B L E t t

E D L
∈

= −

= − −∑



The linear interpolation solution to the equation  is:( )ˆ 0L Lψ =

where  is the last value of k for which  is non-positive.**k ( )( )
ˆ

L kEψ

The upper and lower bias parameter estimates,  and , depend on the values ofˆ
UB ˆ

LB

the top and bottom weighted residuals  and .  If(1) (2) ( *)
ˆ ˆ ˆ, , , kD D D� (1) (2) ( **)

ˆ ˆ ˆ, , , kE E E�
the data used to generate the cutoff values is the same as the data for which the
winsorized cutoff values are to be applied, then it is those units with the values of the
top and bottom weighted residuals that will be winsorized.  In this case the estimated

bias, , will be realised.  However, if the data used to generate the cutoff valuesˆ ˆ
U LB B+

is different then it is assumed that data for which the winsorized cutoff values are to
be applied fits the same model as the data used to generate the cutoff values.  If this

assumption holds then the realised bias should be approximately .ˆ ˆ
U LB B+

2.2  Estimate of robust regression parameters

Suppose the generalised regression estimator is based on the model:

where  is a set of auxiliary variables for which the population( )1 , , , , T
i i ki Kix x x x= � �
!

totals are known.  It would appear logical to apply this same model to generate  toˆiµ
be used as a robust estimate of the parameter , as well as in the estimation of theiµ
upper and lower bias parameters,  and .UB LB
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E E E E
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∑
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** **

** **
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( ) ( )( 1) ( )** **
1 1
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ˆ
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k k

L j L jk k
j j

L Lk k

E E E E
k k

L
E E

ψ ψ

ψ ψ

+

+
= =

+

   
−   

+ +      =
−

∑ ∑

( ) T
i i iE Y xµ β= =

!!
( ) 2

i iVar Y σ=



QUESTION 2:  Is it logical to apply the same regression model used for the
generalised regression estimator, to generate the regression parameters for the
winsorized cutoff values? Should this same model be used to form winsorized
cutoff values for all variables collected in the survey?  If a regression model is
known which fits another variable better, then should this regression model be
used to form winsorization cutoff values for this other variable, even though it was
not used for the generalised regression estimator?

There are many solutions to the problem of estimating robust regression parameters.
It is worth noting that the task is not to find the best robust regression model, but
rather to find a robust regression fitting procedure which results in the best
performing winsorized estimator.  Furthermore, since this procedure will have to be
used for many ABS business surveys and understood by a range of people, it is
desirable that the procedure is simple, flexible and easily traceable.  An investigation
was performed using a number of different robust regression fitting techniques to
determine which method resulted in the best performing winsorized estimator.  The
techniques are listed in the following paragraphs with the results of the investigation
presented in Section 2.3.

2.2.1  Trimmed least squares

The Trimmed Least Squares (TLS) technique consisted of fitting an Ordinary Least
Squares (OLS) regression model to minimise the function:

The residuals were calculated by applying the regression model back to the data used
to fit the model.  A percentage of the units with the largest positive and negative
residuals were then removed from the data.  A second regression model was then
fitted to the reduced data, to estimate the robust regression parameters.  The
percentage of units removed and actual method of removing these units was varied in
the investigation.  The TLS technique has the advantage that it is extremely quick to
run, simple to understand and easy to trace.  Standard regression diagnostics can be
generated from the fit of the regression model.
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( )2T
i i

i s

F y xβ
∈

= −∑



2.2.2  Trimmed least absolute value or L1 regression technique

The Trimmed Least Absolute Value (LAV) or L1 Regression Technique consisted of
fitting a regression model to minimise the function:

The residuals were calculated by applying the regression model back to the data used
to fit the model.  A percentage of the units with the largest positive and negative
residuals were then removed from the data.  A second regression model was then
fitted to the reduced data, to estimate the robust regression parameters.  The
percentage of units removed and actual method of removing these units was varied in
the investigation.

This technique is very similar to the current method used to perform winsorization in
ABS business surveys using ratio estimation.  The difference is that the current
method truncates the data to a percentile value (10% and 90%) rather than removing
the data.  The LAV technique should result in a more robust regression model than
the TLS technique because large residuals have less influence on the regression
parameters, since the residuals are not squared.

2.2.3  Sample splitting technique

The Sample Splitting (SS) Technique consists of fitting an OLS regression model after
the data has been randomly split into two halves.  The ‘residuals’ were calculated by
applying the regression model back to the half of the data not used to fit the model.
The units with the largest positive and negative residuals were then removed from the
data after the two halves were then merged back together.  This process was repeated
until a percentage of the units had been removed.  The SS technique should result in
a more robust regression model than the TLS technique because the residuals used to
remove the ‘outlier’ units are not calculated from a regression model that has been
generated using these ‘outlier’ units.

2.2.4  Least median of squares

The Least Median of Squares (LMS) technique, described by Rousseeuw and Leroy
(1987), consisted of minimising the median of all sample squared residuals.  The LMS
regression parameters cannot be found analytically, so a resampling technique similar
to the bootstrap is applied to find an approximate solution.  The LMS technique is
approximated by calculating the median of squared residuals of many trial regression
parameters, and then selecting the regression parameters with the smallest median of
squared residuals.  The LMS technique should result in a more robust regression
model than the TLS technique because it has the effect of fitting an OLS regression
model in the absence of "outlier" units, without totally removing these ‘outlier’ units.
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i s

F y xβ
∈

= −∑



2.3  Simulation study

A simulation study was undertaken to assess the performance of these various
techniques to estimate robust regression parameters, and hence estimate the cutoff
values used in the winsorized estimator.  The simulation study examined:

! the ‘best’ robust regression fitting technique (Section 3.3.1)

! the data used to calculate cutoff values under winsorization (Section 3.3.2)

! the level to calculate bias parameters under winsorization (Section 3.3.3)

! the sample weights to calculate the cutoff values under winsorization (Section
3.3.4)

The simulation study was performed using a survey population of approximately
700,000 units, based on the survey frame used for the Quarterly Economic Activity
Survey (QEAS).  QEAS uses a stratified random sample design with strata defined by
the variables state, industry and employment size.  The total sample size is
approximately 16,400.  The reported QEAS sales variable was used as the response
variable for the study.  BAS wages and BAS turnover values were merged to the frame,
to be used as the auxiliary variables.  For the non sampled units on the frame a QEAS
sales value was generated using a regression model involving BAS wages, BAS
turnover, frame employment and an error term:

where
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i 1 1i 2 2i 3 3i i
ˆ ˆ ˆˆ ˆŷ x x x= α + β + β + β + ε

i

1i

2i

3i

ŷ  is the predicted QEAS Sales for unit 

x  is the BAS Wages for unit 

x  is the BAS Turnover for unit 

x  is the Business Register Employment for unit 

ˆ  is the intercept parameter from fitting 

i

i

i

i

α

1

2

3

the model on the sampled units
ˆ  is the BAS Wages parameter from fitting the model on the sampled units

ˆ  is the BAS Turnover parameter from fitting the model on the sampled units

ˆ  is the Business

β

β

β

2
i i

2
i

 Register Employment parameter from fitting the model

on the sampled units

ˆ  is random noise for unit  from N(0, )

 is the variance of the predicted value for unit  

i

i

ε σ

σ



The regression model was fit at stratum level wherever there were sufficient sampled
units.  Where there were less than five responding units in a stratum the QEAS sales
value was generated from a model fit at employment size level.

2.3.1  ‘Best’ robust regression fitting technique

The simulation study consisted of selecting three independent stratified random
samples to generate cutoff values under the various robust regression fitting
techniques, and then applying these cutoff values to another independent stratified

random sample to calculate the winsorized estimator, .  This process wasŷwint

repeated a large number of times, R.  The measures used to assess the performance of
the various robust regression fitting techniques were the Mean Squared Error (MSE)
and the bias:

where  is the winsorized estimator for the r-th simulated sample selected from,ŷwin rt

the population, and  is the known population total.yt

The MSE and bias under the various robust regression fitting techniques were
compared with the MSE and bias of the ‘unwinsorized’ estimator:

The percentage reduction in MSE for the various robust regression fitting techniques
was calculated as:

and the methods with the largest percentage reduction in MSE and smallest
percentage bias were considered the ‘best’.
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y
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MSE t

−
= ×

ˆ ˆ( ) ( )
100%
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y
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Bias Reduction
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−
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The regression parameters were calculated at the industry level, using an intercept
term and two auxiliary variables, BAS wages and BAS turnover.  For the TLS and SS
methods 5% of units were removed.  The regression models were fit at the industry
level since it appeared logical to fit the regression model at the same level as the
generalised regression model.  There were major problems associated with the LAV
technique when several auxiliary variables were attempted, because the matrices in
the minimisation problems were frequently ill conditioned.  Therefore, the results for
the LAV technique are based on a single auxiliary variable, BAS Turnover.  The
percentage reduction in MSE and percentage bias for the various robust regression
fitting techniques are presented in Table 1.  200 Repetitions (R = 200) were used to
generate these results.

Table 1:  Percentage reduction in MSE and bias of Winsorized estimates for various techniques

–1.8117.37LMS 

–0.34–58.46SS 

–1.14–29.62LAV 

–0.31–57.93TLS 

Bias (%) MSE Reduction (%)

Robust Regression

Fitting Techniques

The LMS technique performed quite poorly, with an increase in MSE, due to a larger
bias.  The explanation for this poor performance is that while this technique results in
a very good model for the core of the data, it can result in a very poor model for the
tails of the distribution.  Since most distributions in ABS business surveys are positively
skewed (i.e. large upper tails), this method is more likely to result in very large values

of  for units in the upper tails of the distribution, where the majority of ‘outlier’ˆ
iD

units are located.  Hence this technique has the potential to result in very high bias
parameters.

While the LAV technique did not perform as well as the TLS and SS techniques, this
was primarily due to the fact that the LAV technique was based on a single auxiliary
variable.  Indeed, the performance of the LAV technique was similar to the TLS and SS
techniques based on single auxiliary variables.  The SS and TLS techniques performed
very well, with the exception of several industries.  The percentage reduction in MSE
and percentage bias for the various robust regression fitting techniques at the industry
level are presented in the Attachment.

In light of the poor performance in industries 18, 30 and 35 some further investigation
was undertaken into the level of fit of the regression model, the handling of influential
units and the percentage of units to be removed.  While these three industries
performed much better, when the regression parameters were calculated at the
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stratum level, rather than the industry level, most other industries performed slightly
worse.  This suggests that there might be a need to fit of the regression model at
different levels to the generalised regression model.

QUESTION 3:  Is it logical to fit a regression model at different levels to the
generalised regression model?

Generally speaking, the greater percentage of units removed from the fit of the
regression model, the more robust the regression parameters.  However, caution
should be taken not to remove too many units, as this can lead to excessive large bias
parameters.  An investigation was undertaken into the impact on the MSE and bias of
the various methods when the percentage of units to be removed was varied.  This
investigation found that the optimal percentage of units to be removed varied across
industries.  Furthermore, there was no conclusive evidence to suggest whether it was
better to remove units based on weighted or unweighted residuals.

The investigations also found that there were some industries where the regression
model fitted to the three historical samples was very different from the regression
model fit to the current data.  This indicates that diagnostics should be incorporated
into the regression fitting procedure before using the regression parameters to
generate cutoff values.  In particular, checking that the regression model fits the data
well, checking that units with large influences are removed from the regression
model, and checking that the regression model fits to current data to be winsorized.

QUESTION 4:  What is the best way to ensure the regression model fitted to the
historical data is still applicable to the current data to be winsorized?  What action
should be taken when the regression model does not fit to the current data to be
winsorized?

2.3.2  Data used to calculate cutoff values

The current practice for ABS business surveys is to use several cycles of historical data
to estimate the regression parameters and bias parameter, and assume that the same
regression model holds for the current data.  This practice was based on work by
Clark (1995) who suggested that the quality of parameters can be improved by using
more data.  The results of the simulation study support these findings, showing a
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much tighter distribution of the bias parameter when more cycles of the data are
used.

An exception to this practice is the monthly Retail Trade Survey which is affected by
seasonal variation.  In this situation it is more effective to use a single cycle of
historical data, the corresponding month in the previous year, to estimate the
parameters.  There is a need for further investigation into weighting the various cycles
of historical data to maximise the stability of parameters over time, in order to
minimise the impact on the movement estimates.

Several ABS business surveys have experienced problems with individual units with
large historical values that adversely influence the estimate of the bias parameter.  It

can be seen that if the largest weighted residual, , is more than double the second(1)D̂

largest weighted residual, , then the bias parameter calculation algorithm will(2)D̂

stop after the second breakpoint, .  The estimate of the( )(2) (2) (1)
ˆ ˆ ˆ2 0U D D Dψ = − <

bias parameter generated will be an interpolation between  and .  If(1)
ˆ

2

D (1) (2)
ˆ ˆ

3

D D+

the unit with the largest weighted residual was not present or was smaller then
estimate may be quite different.

Another problem with these large historical values is that they can make the bias
parameters unstable over time, and hence result in large impacts on movement
estimates.  The current practice is to remove units with large historical values which
have an adverse influence on the estimate of the bias parameter.  This is justified by
assuming the units come from a different population entirely and so including them
does not add any information about the tail of the distribution of interest.  These units
should be removed with caution however, otherwise it could lead to cutoff values that
are too small.

QUESTION 5:  What is the best way to deal with units with large historical values
which have an adverse influence on the estimate of the bias parameter?

2.3.3  Level of calculate bias parameters

The level at which the bias parameters,  and , are calculated will determine theUB LB

performance of estimates at the various levels.  If the bias parameters are calculated at
a broad level (e.g. Australia or industry levels), then these broad level estimates should
perform well, but the finer level estimates may have large variances, as ‘outlier’ units
may be undetected at these levels.  On the other hand, if the bias parameters are
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calculated at finer levels, then these fine level estimates should perform well, but the
broad level estimates may exhibit large biases, as too many units may be winsorized at
these levels.

The solution suggested by Chambers, Kokic, Smith and Cruddas (2000), and current
implemented for ABS business surveys, is to calculate the bias parameters at the most
important level.  This treatment could well produce poor quality estimates of at the
finer levels.  In practice any further units that adversely affect the estimates at the finer
levels have usually been made surprise outliers (i.e. had their weight set to one) to
overcome this problem.  It is expected that some surprise outliering will always be
required regardless of the winsorisation methodology, although a compromise
solution, to calculate the bias parameters at an artificial intermediate level, has
promise for reducing the extent of surprise outliering required.

An alternative approach suggested to this problem is to calculate bias parameters at
broad and fine levels.  The fine level estimates would then be modified using rescaling
factors such that they are consistent with the broad level estimates.  Although this
method has its merits, it has several disadvantages.  Firstly, under this approach either
the unit record data will no longer add to published estimates; or the rescaling factors
will need to be applied to all units in the survey.  Secondly, this approach will become
very complex where there are large number of data items or relationships between
the data items.

2.3.4  Sample weights used to calculate cutoff values

The estimates of regression parameters, , and bias parameters,  and , areˆiµ ˆ
UB ˆ

LB
usually generated from historical data and hence are treated as independent from the
current data.  However, the cutoff values do depend on the current data through the

sample weights,  (i.e. generalised regression weights under generalised regressioniw!
estimation).  The use of generalised regression weights to calculate the cutoff values
means that the generalised regression weights need to be available to perform
winsorization.  On the other hand, the use of design weights to calculate the cutoff
values has the advantage that the cutoff values can be generated in advance of the
generalised regression weights to allow sufficient time for quality checking.
Furthermore, the use of design weights also simplifies variance estimation under the
bootstrap methodology, since the same winsorized values can be used in all replicate
samples, rather than being calculated separately for each replicate sample.  Therefore,
an investigation was undertaken into the performance of the winsorized estimator

using the design weight, , in place of the generalised regression weight, ,1i iw π= iµ
to generate the cutoff values.

The investigation used three independent samples to generate cutoff values based on
TLS technique, with 5% of units removed.  The regression parameters were calculated
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at the industry level, using two auxiliary variables, BAS wages and BAS turnover.  These
cutoff values were then applied to a fourth independent sample.  This process was
repeated 200 times.  The relative differences between the winsorized estimates when
cutoff values are calculated using the generalised regression weights and design
weights are presented in Table 2.

Table 2:  Relative difference between Winsorized estimates
using generalised regression weight and design weight

0.0> 10 %

0.05–10 %

0.03–5 %

2.51–3 %

9.00.5–1 %

88.50–0.5 %

Percentage

of Units

Difference between

Winsorized Estimates

At the Australia level, 88.5% of independent samples resulted in less than 0.5%
difference between the winsorized estimates using the generalised regression weights
and design weights.  At the industry level, most estimates differed by less than 3.0%.
Those industries with the larger differences (i.e. Industries 18, 26, 30 and 35) have
already been identified as having questionable regression models throughout the
simulation study.  The relative differences between the winsorized estimates using the
generalised regression weights and design weights at the industry level are presented
in Attachment 1.

QUESTION 6:  Is there any reason why the design weights should not be used in
the calculation of cutoff values used in the winsorized estimator?
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3.  LINEAR RELATED ITEMS

Most ABS business surveys collect and derive a wide range of data items.
Furthermore, there often exists linear relationships between these data items.  For

example, suppose a survey collects a set of variables, , and a derived1 2, ,...., Ky y y

variable, , is calculated as a linear combination of these variables, .  In0y 0
1

K

k k
k

y a y
=

= ∑

this situation there exists the following linear relationship between the variables, 

, where .  It is important that these linear relationships still hold
0

0
K

k ki
k

a y
=

=∑ 0 1a = −

after winsorization.  Therefore, an important issue for winsorization is to develop a
method to maintain the linear relationships between the variables.

In theory, winsorization can be applied to all the survey variables.  However, in most
cases the linear relationships between these variables will no longer hold after
winsorization.  The current ABS estimation system allows the linear relationships to be
maintained by either:

! winsorizing the set of component variables, , and then calculating* * *
1 2, ,...., Ky y y

the ‘winsorized’ derived variable based on these winsorized component

variables, ; or* *
0

1

K

i k ki
k

y a y
=

= ∑

! winsorizing the derived variable, , and then calculating the ‘winsorized’ set of*
0iy

component variables by applying the same proportional adjustment, 

.
*

* 0

0

i
ki ki

i

y
y y

y
=

Unfortunately, there are some situations where these two methods perform quite
poorly.  The major problem with the first of these methods is that it could result in
very poor values for the ‘winsorized’ derived variables, in particular where some of the

 are negative.  For example, suppose profits  is derived based on total income ka 0y

 minus total expenses  plus opening stocks  minus closing stocks  (i.e. 1y 2y 3y 4y

).  Suppose a unit has an unusually large total expenses, but total0 1 2 3 4y y y y y= − + −
income, opening stocks and closing stocks are not unusual.  Furthermore, suppose
the derived profit for the unit is negative.  Using the first of the methods under the
current ABS estimation system, the ‘winsorized’ derived profit for the unit could easily
end up positive, since only total expenses is winsorized.  This treatment could well
have a detrimental impact on the sign of the estimates of profit from the survey.

The major problem with the second of these methods is that it could result in very
poor values for the ‘winsorized’ set of component variables, in particular where some
of the components of a derived variable are usually much smaller than other
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components.  For example, suppose total income is derived based on a number of
variables, including sales income (generally a large component of total income) and
royalties income (generally a small component of total income).  However, suppose a
unit has an unusually large royalties income, but total income is not unusual.  Using
the second of the methods under the current ABS system, the royalties for the unit
will not be winsorized, since total income is not winsorized.  This treatment could well
produce poor quality estimates of royalties from the survey.  In practice these units
have usually been made surprise outliers (i.e. had their weight set to one) to
overcome this problem.  Another problem with this method is that it can be quite
cumbersome to maintain multiple linear relationship between the variables.

Chambers, Kokic, Smith and Cruddas (2000) suggested an alternative to the second
method, which distributes the difference between the original and winsorized derived
variable amongst the largest component variables.  This method is based on the
principle that an outlier on the derived variables will generally be due to one or
several of the component variables being unusually large, rather than all the

component variables.  Let  denote the ordered set of component(1) (2) ( )Ky y y≥ ≥ ≥�

variables with coefficients , then the ‘winsorized’ set of component( ) ( ) ( )1 2, , , Ka a a�

variables are computed using the equation:

where  is the largest value of j for which*j

It should be noted this method cannot be applied in its current form in the situation

where some of the  are negative.  However, it is relatively simple to modify thiska

method to be appropriate for this situation, and where there are two-sided winsorized
cutoff values.  While this method has its merits, it suffers from the same problems as
the second of the methods under the current ABS estimation system.

Another alternative method which attempts to overcome the shortcomings of the two
methods under the current ABS estimation system is to winsorize all the survey
variables and then modify these winsorized values, so that the linear relationships
between these variables still hold, by a process known as calibration.  A new set of

winsorized values for variable k for unit i, , are sought which lie as close as possible**
kiy
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to the set of original winsorized values, .  The calibration requires the specification*
kiy

of distance function between the original and final winsorized values.

Although any one of a number of distance functions could be used, one of the most
commonly used is the generalised least squares distance function:

where  are specified positive factors that control the relative importance of thekc

variables.

QUESTION 7:  Is the concept of minimising a distance function to ensure linear
relationships between variables still holds after winsorization appropriate?  Is the
generalised least squares distance function appropriate?

Minimisation of the generalised least squares distance function using Lagrange

multipliers, subject to satisfying the linear relationship constraint, , leads
**

0
0

K

k ki
k

a y
=

=∑

to the final winsorized values:

This method can easily be extended to multiple linear relationship constraints (i.e. 

).  One disadvantage of this method is that some of the final winsorized**

0
0

K

k ki
k

a y
=

=∑
!

values can be negative for variables which should always be positive (and vice versa).
This problem can be overcome by imposing range restrictions on the final winsorized

values, , where L and U are suitable lower and upper bounds.  In order to**
kiL y U≤ ≤
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satisfy the linear relationship constraints and the range restrictions, the calculation of
the final winsorized values needs to be undertaken using an iterative method.

The first of the methods under the current ABS estimation system is a special case of
this alternative method.  If the factors for the set of component variables are all set to

infinity (i.e. ) and  then the final winsorized values1 2 Kc c c= = = = ∞� 0 1a = −
simplify to:

which is equivalent to the first method under the current ABS estimation system.  On
the other hand, the second of the methods under the current ABS estimation system
is not a special case of this alternative method.
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4.  CONCLUSION

The effectiveness of winsorization at robustifying the GREG estimator against
unusually large residuals will ultimately depend on the choice of the cutoff values, and
hence the methods used to estimate the bias parameters and regression parameters.
This paper has investigated several techniques for fitting robust regression models and
found that the winsorized estimator performs best under models that are only
moderately robust.  Some conceptual questions have been raised about the link that
should exist between the GREG model and the model used to estimate regression
parameters for cutoffs.  Current thinking is that the models should involve the same
auxillary variables and be fitted at the same level, however the simulation study found
cases where different models improved performance.

One of the key findings of the study was that diagnostics should be incorporated into
the regression fitting procedure before using the regression parameters to generate
cutoff values.  In particular, checking that the regression model fits the data well,
checking that units with large influences are removed from the regression model, and
checking that the regression model fits to current data to be winsorized.

The winsorization methodology described in this paper works well for point in time
estimates.  Further work to assess the performance of winsorization on GREG
estimates of movement between time points may prove useful.  Movement estimates
are a key output for many ABS business surveys.  It has been noted that large historical
values can make bias parameters unstable over time and hence impact on movement
estimates.  Further work to determine the best way of dealing with these values and
the best way of weighting various cycles of historical data to maximise stability of
parameters over time is recommended.

Linear relationships between data items is another area warranting further
investigation.  Shortcomings of the current ABS estimation system’s ability to handle
linear relationships between survey variables have been discussed and an alternative
method presented.  The alternative method requires specification of a distance
function between original and final winsorized values.  Investigation is planned into
the performance of this method and the suitability of the generalised least squares
distance function.

The simulation study presented here independently replicated the process of
selecting historical samples, estimating cutoffs and applying cutoffs to independent
samples.  A large number of replicates were generated to produce estimates of the
MSE and bias of the winsorized estimator.  In practice only a single set of cutoffs is
generated, based on historical data, and used to winsorize the present sample.  This
introduces a source of variability which is not reflected in current variance estimates
and which would be difficult to incorporate.  The simulation study found cutoffs to be
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more stable when several cycles of historical data was used to estimate parameters
and this is the approach that will be implemented for GREG estimation.  Further work
could involve using the data from the simulation study to quantify the significance of
the variability introduced through estimating cutoffs.
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ATTACHMENT

Table 1:  Percentage reduction in MSE and bias of Winsorized estimates for various methods

–1.81–0.34–1.14–0.3117.37–58.46–29.62–57.93Total

–0.80–0.45–0.48–0.43–19.16–19.05–19.96–19.0876
0000000048
0000000047
0000000046
0000000045
0000000044
0000000043

–5.42–1.53–4.322.27–53.78–67.65–61.01–41.2342
–1.852.40–0.491.86–61.23–67.93–65.51–67.7641
–2.44–0.67–2.49–0.78–75.96–77.40–75.52–77.0240
–0.770.60–0.020.74–22.09–31.06–26.41–29.4739
–3.95–2.55–3.20–2.63–23.74–33.81–28.74–32.1738
–1.400.58–0.590.79–41.76–46.33–45.40–46.0837

–11.49–6.83–9.42–6.73–37.20–56.67–46.90–56.5236
3.739.044.758.34–47.37–34.63–48.07–37.4335

–0.78–0.16–0.53–0.18–45.02–47.37–45.08–46.8133
0000000031

10.2415.469.9615.16–39.80–22.01–41.04–19.4530
0.432.711.712.39–55.91–43.87–51.61–46.5928

–0.932.61–0.162.41–53.14–49.54–52.68–49.2027
–5.78–0.70–4.75–0.79–34.28–40.04–31.24–39.8926
–0.68–0.320.97–0.32–34.17–42.8974.68–43.3625
0.671.701.031.12–35.42–32.25–33.70–32.6322

–0.66–0.15–0.36–0.14–41.79–44.77–44.97–44.1219
–10.30–7.53–9.98–8.13–35.17–53.97–37.46–50.0118

–1.51–0.05–0.74–0.22–42.16–50.19–49.59–51.0117
–0.880.11–0.400.21–36.18–41.01–38.51–39.6316
–1.32–0.26–0.57–0.24–19.81–27.69–25.68–27.7515
–1.32–0.44–1.14–0.01–17.50–26.85–20.14–27.3814
0.421.880.921.61–66.13–65.61–66.60–66.0013

–4.32–1.31–3.00–1.15–9.93–18.94–13.92–18.1312
–1.91–0.66–2.21–0.60–58.78–65.54–54.16–65.6611
–0.110.540.620.39–17.14–25.73–22.78–25.0910
–3.18–2.06–2.76–1.97–24.60–40.78–30.51–40.6008
–0.460.561.310.43–41.43–39.81–15.18–42.5707
–2.03–0.04–1.99–0.03–38.69–50.82–39.52–50.9706
–4.23–1.96–3.04–2.21–22.35–57.15–44.71–52.8605
–2.630.60–1.630.69–34.04–58.62–45.50–57.4104
–0.800.490.610.52–36.57–50.33–49.08–49.7703
–0.46–0.070.11–0.06–24.78–19.33–17.65–19.3201

 LMS

Method

 SS

Method

 LAV

Method

 TLS

Method

 LMS

Method

 SS

Method

 LAV

Method

 TLS

MethodIndustry

Bias (%)MSE Reduction (%)
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Table 2:  Relative difference between Winsorized estimates using generalised regression weight
and design weight

0002.59.088.5Total

0004.012.084.076 

00000100.048 

00000100.047 

00000100.046 

00000100.045 

00000100.044 

00000100.043 

0.52.510.539.012.035.542 

02.08.526.517.545.541 

2.02.53.529.518.544.040 

002.015.015.567.539 

001.06.016.077.038 

003.517.514.564.537 

0.52.07.027.524.538.536 

5.012.018.531.013.020.535 

0002.07.091.033 

00000100.031 

11.521.016.535.06.59.530 

1.52.05.534.520.036.528 

3.06.011.030.519.530.027 

2.016.512.033.013.023.526 

0001.06.093.025 

000.56.017.076.522 

0003.012.584.519 

4.08.510.530.512.034.518 

000.59.016.074.517 

0006.516.077.516 

0003.015.581.515 

000.511.518.070.014 

002.527.519.550.513 

0.53.514.539.522.020.012 

000.58.014.577.011 

0002.010.088.010 

0000.55.594.008 

001.013.511.574.007 

01.08.023.023.544.506 

000.510.518.570.505 

002.517.516.064.004 

0003.55.591.003 

0002.014.583.501 

> 10 %5–10 %3–5 %1–3 %0.5–1 %0–0.5 %Industry

Difference between Winsorized estimates
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